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Abstract

We explicitly describe Levi subgroups of odd spin groups over algebraic clo-

sure of a p-adic field.

1 Introduction

Let F be an algebraic closure of a p-adic field. For n ∈ N, let Spin(2n +

1, F ) be the split simply-connected algebraic group of type Bn. Spin(2n+

1, F ) is a double covering, as algebraic groups, of the odd special orthog-

onal group SO(2n + 1, F ). In the representation theory, it is very im-

portant to know what the Levi subgroups in considered group look like.

In some other classical groups, such as already mentioned SO(n, F ), the

Levi subgroups are isomorphic to a product of some general linear groups

and another SO(m,F ), where m ≤ n, i.e. product of some general linear

groups and classical group of a smaller rank and of a same type. But,

this is not the case for spin groups, which implies that some different

techniques for investigating these groups have to be used. Examples of

Levi subgroups of Spin(5, F ) can be found in [2], so we assume n > 2.

Here is an outline of the paper. Section 2 presents some preliminaries,

mainly from [3] and [6]. In the third section, we have case-by-case con-

sideration of Levi subgroups. The same method was used by Asgari in [1]

to determine the Levi subgroups of a simply-connected group of type F4.

The author wishes to express his thanks to Prof. Goran Muić and Prof.

Marcela Hanzer for their active interest in the publication of this paper.

The author would also like to thank M. Asgari for useful discussions about

GSpin groups.

2 Preliminaries

Fix a maximal torus T of Spin(2n + 1, F ) and a Borel subgroup B con-

taining T . The based root system associated to (Spin(2n + 1, F ), B, T ),
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(X, Σ, X∨, Σ∨), is given by

X = Ze1 ⊕ Ze2 ⊕ · · · ⊕ Zen−1 ⊕ Ze1 + · · ·+ en

2

X∨ = Z(e∨1 − e∨2 )⊕ Z(e∨2 − e∨3 )⊕ · · · ⊕ Z(e∨n−1 − e∨n)⊕ Z2e∨n

Let Σ = {α1, α2, . . . , αn} be a system of simple roots, where α1 =

e1 − e2, α2 = e2 − e3, . . . , αn−1 = en−1 − en, αn = en. We denote

the associated coroots by Σ∨ = {α∨1 , α∨2 , . . . , α∨n}, where α∨1 = e∨1 − e∨2 ,

α∨2 = e∨2 − e∨3 , . . . , α∨n−1 = e∨n−1 − e∨n , α∨n = 2e∨n (observe that e1, . . . , en

are chosen in the standard way, such that 〈ei, e
∨
j 〉 = δi,j).

Every standard Levi subgroup corresponds to some subset θ of Σ.

Subgroup corresponding to θ will be denoted by Mθ. Each Mθ is an

almost direct product of a connected component of its center and its

derived group. Connected component of the center of Mθ will be denoted

by Aθ, while derived group of Mθ will be denoted by M ′
θ. In other words,

Mθ ' Aθ ×M ′
θ

Aθ ∩M ′
θ

Since Spin(2n + 1, F ) is a simply-connected group, the derived group

of each Mθ is also simply-connected, so it can be obtained directly from

θ, i.e. from its root system. It is well - known that

Aθ = (
⋂

β∈θ

kerβ)0

so Aθ can also be obtained from the set of simple roots θ. After obtaining

Aθ and M ′
θ (which will be considered case-by-case, depending on the type

of θ), we can construct their almost direct product to finally obtain Mθ.

The maximal torus of Spin(2n + 1, F ) will be denoted by T . We have

the next proposition ([1], Proposition 3.1.2 or [4], page 108), which holds

for simply-connected groups:

Proposition 2.1 Each t ∈ T can be written uniquely as

t =
n∏

i=1

α∨i (ti), ti ∈ F ∗

Kernels of simple roots in Σ can now be described as follows:
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Proposition 2.2 Let t ∈ kerαi. Then

αi(t) = αi(
n∏

j=1

α∨j (tj)) =
n∏

j=1

t
〈αi,α

∨
j 〉

j = 1

This implies:

• if i = 1, then t21 = t2

• if 2 ≤ i ≤ n− 2, then t2i = ti−1ti+1

• if i = n− 1, then t2i = ti−1t
2
i+1

• if i = n, then t2i = ti−1

Let z = α∨n(−1). From [1], Corollary 3.1.3, follows that the center

of Spin(2n + 1, F ) equals {1, z} ' Z2. From now on, z stands for the

non-trivial element of the center of Spin(2n + 1, F ), for some n ≥ 1.

We introduce the notion of the general spin groups, following Asgari [1].

These groups are defined in the following way:

GSpin(2n + 1, F ) =
GL(1, F )× Spin(2n + 1, F )

{(1, 1), (−1, z)} , n ≥ 1,

GSpin(1, F ) = GL(1, F ).

The derived group of a general spin group is a spin group.

Advantage of general spin groups is that their Levi subgroups are iso-

morphic to a product of general linear groups and a general spin group of

a smaller rank. This was proved in [1], using root datum of general spin

groups. Another proof can be found in this manuscript.

3 LEVI SUBGROUPS

Let us fix some notation. Let θ ⊂ Σ, θ 6= ∅. Here and subsequently, we

will write θ as a union of connected components of its Dyinkin diagram,

θ = θ1 ∪ θ2 ∪ · · · ∪ θk

where θi ∩ θj = ∅ for i 6= j. We choose θ1, . . . , θk in such a way that for

αi1 ∈ θj1 and αi2 ∈ θj2 , where j1 < j2, then i1 < i2. For 1 ≤ i ≤ k, let
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ni = |θi|. For shorten notation, we write li instead of
∑

1≤j≤i nj. Now

it follows that, if mini is the minimal index such that αmini
∈ θi, then

θi = {αmini
, αmini+1, . . . , αmini+ni−1}. Also, if αi1 ∈ θj1 and αi2 ∈ θj2 ,

where j1 < j2, then i2 − i1 > 1.

We write ζk for the k−th primitive root of identity in F ∗ and In for

n× n identity matrix.

Now we begin case-by-case consideration:

(1) Suppose α1 ∈ θ, αn−1, αn /∈ θ. Obviously, α1 ∈ θ1, min1 = 1 and

mink + nk − 1 < n− 1.

We obtain M ′
θ using [4], Chapter 5., Theorem 1.33, Lemma 1.35 and

Example 1.36 (pages 109-111), where derived group of Mθ is described.

In this case, M ′
θ is isomorphic to SL(n1 + 1, F ) × SL(n2 + 1, F ) × · · · ×

SL(nk + 1, F ).

Let λ1 = t1. From Proposition 2.2. we get t2 = λ2
1, t3 = λ3

1, . . . , tn1 =

λn1
1 , tn1+1 = λn1+1

1 . Next, put λ2 = tn1+2, λ3 = tn1+3, . . . , λmin2−n1 =

tmin2 . If min2 = n1+2, then let µ1 = λn1+1
1 ; let µ1 = λmin2−n1−1 otherwise.

From Proposition 2.2. again, we obtain

tmin2+1 = t2min2
t−1
min2−1 = λ2

min2−n1
µ−1

1 ,

tmin2+2 = t2min2+1t
−1
min2

= λ4
min2−n1

µ−2
1 λ−1

min2−n1
= λ3

min2−n1
µ−2

1 ,

tmin2+3 = t2min2+2t
−1
min2+1 = λ4

min2−n1
µ−3

1 ,
...

tmin2+n2−1 = λn2
min2−n1

µ−n2+1
1 ,

tmin2+n2 = λn2+1
min2−n1

µ−n2
1 .

This equations cover kernels of all the roots in θ2, so for each root be-

tween θ2 and θ3 we put λmin2−n1+1 = tmin2+n2+1, λmin2−n1+2 = tmin2+n2+2,

. . . , λmin3−l2 = tmin3 . If min3 = min2+n2+1, then let µ2 = λn2+1
min2−n1

µ−n2
1 ;

let µ2 = λmin3−l2−1 otherwise. Repeating the procedure similar to that in

the previous paragraph, we get

tmin3+1 = t2min3
t−1
min3−1 = λ2

min3−l2
µ−1

2 ,
...

tmin3+n3−1 = λn3
min3−l2

µ−n3+1
2 ,

tmin3+n3 = λn3+1
min3−l2

µ−n3
2 .

We continue by repeating this process for all the remaining subsets
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θ4, . . . , θk of θ. At the end we get tmink+nk−1 = λnk
mink−lk−1

µ−nk+1
k−1 and

tmink+nk
= λnk+1

mink−lk−1
µ−nk

k−1 .

Since in this case mink + nk < n, we also have to put λmink−lk−1+1 =

tmink+nk+1, . . . , λn−lk = tn.

Finally, we have:

Aθ = {α∨1 (λ1)α
∨
2 (λ2

1) · · ·α∨n1+1(λ
n1+1
1 )α∨n1+2(λ2) · · ·α∨min2

(λmin2−n1) ·
α∨min2+1(λ

2
min2−n1

µ−1
1 )α∨min2+2(λ

3
min2−n1

µ−2
1 ) · · ·

α∨min2+n2
(λn2+1

min2−n1
µ−n2

1 )α∨min2+n2+1(λmin2−n1+1) · · ·α∨min3
(λmin3−l2) ·

α∨min3+1(λ
2
min3−l2

µ−1
2 ) · · ·α∨min3+n3

(λn3+1
min3−l2

µ−n3
2 ) · · ·

α∨mink+nk
(λnk+1

mink−lk−1
µ−nk

k−1)α∨mink+nk+1(λmink−lk−1+1) · · ·α∨n(λn−lk) :

λ1, · · · , λn−lk ∈ F ∗} ' (F ∗)n−lk

After identifying Aθ with GL(1, F )n−lk ' (F ∗)n−lk , we fix (as in [4],

Example 1.36) an identification of M ′
θ with SL(n1+1, F )×SL(n2+1, F )×

· · · × SL(nk + 1, F ) under which the element α∨1 (λ1)α
∨
2 (λ2

1) · · ·α∨n1
(λn1

1 )

goes to the diagonal element diag(λ1, λ1, . . . , λ1, λ
−n1
1 ) of SL(n1 + 1, F ),

α∨min2
(λmin2−n1)α

∨
min2+1(λ

2
min2−n1

µ−1
1 ) · · ·α∨min2+n2−1(λ

n2
min2−n1

µ−n2+1
1 ) to

diag(λmin2−n1 , . . . , λmin2−n1 , λ
−n2
min2−n1

) of SL(n2+1, F ) and proceed in the

same way for all connected components θ3, . . . , θk (similar identifications

are used in all cases). Using this identifications, we conclude that in

Aθ

⋂
M ′

θ we have:

λn1+1
1 = 1, λ2 = λ3 = · · · = µ1 = 1,

λn2+1
min2−n1

= 1, λmin2−n1+1 = λmin2−n1+2 = · · · = µ2 = 1,

λn3+1
min3−l2

= 1, . . . , µk−1 = 1, λnk+1
mink−lk−1

= 1,

λmink−lk−1+1 = · · · = λn−lk = 1,

therefore

Aθ ∩M ′
θ = {α∨1 (λ1)α

∨
2 (λ2

1) · · ·α∨n1
(λn1

1 )α∨min2
(λmin2−n1) · · ·

α∨min2+n2−1(λ
n2
min2−n1

) · · ·α∨mink+nk
(λnk

mink−lk−1
) :

λn1+1
1 = 1, λn2+1

min2−n1
= 1, . . . , λnk+1

mink−lk−1
= 1}

' 〈ζn1+1〉 × 〈ζn2+1〉 × · · · × 〈ζnk+1〉
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It follows immediately that

Mθ ' (F ∗)n−lk × SL(n1 + 1, F )× · · · × SL(nk + 1, F )

〈ζn1+1〉 × · · · × 〈ζnk+1〉
' F ∗ × SL(n1 + 1, F )

〈ζn1+1〉 × · · · × F ∗ × SL(nk + 1, F )

〈ζnk+1〉 × (F ∗)n−lk−k

' GL(n1 + 1, F )× · · · ×GL(nk + 1, F )×GL(1, F )n−lk−k

because the mapping F ∗ × SL(n, F ) → GL(n, F ), (x, S) 7→ xIn · S, is

a surjective homomorphism whose kernel is isomorphic to 〈ζn〉.

(2) Suppose α1, αn−1, αn /∈ θ. Of course, mink +nk− 1 < n− 1. M ′
θ is

again isomorphic to SL(n1 + 1, F )×SL(n2 + 1, F )× · · · ×SL(nk + 1, F ).

We start with λ1 = t1, λ2 = t2, . . . , λmin1 = tmin1 . It follows tmin1+1 =

λ2
min1

λ−1
min1−1,. . . , tmin1+n1−1 = λn1

min1
λ−n1+1

min1−1 and tmin1+n1 = λn1+1
min1

λ−n1
min1−1.

We can now proceed analogously to the case (1):

Aθ = {α∨1 (λ1) · · ·α∨min1
(λmin1)α

∨
min1+1(λ

2
min1

λ−1
min1−1) · · ·

α∨min1+n1
(λn1+1

min1
λ−n1

min1−1) · · ·α∨mink
(λmink−lk−1

) · · ·
α∨mink+nk

(λnk+1
mink−lk−1

µ−nk
k−1)α∨mink+nk+1(λmink−lk−1+1) · · ·

α∨n(λn−lk) : λ1, · · · , λn−lk ∈ F ∗}
' (F ∗)n−lk

In Aθ ∩M ′
θ we have:

λ1 = · · · = λmin1−1 = 1, λn1+1
min1

= 1,

λmin1+1 = · · · = λmin2−n1−1 = µ1 = 1, λn2+1
min2−n1

= 1,
...

λmink−1−lk−2
= · · · = λmink−lk−1−1 = µk−1 = 1,

λnk+1
mink−lk−1

= 1, λmink−lk−1+1 = · · · = λn−lk = 1.

Therefore, Aθ ∩M ′
θ ' 〈ζn1+1〉 × 〈ζn2+1〉 × · · · × 〈ζnk+1〉 and, again,

Mθ ' GL(n1 + 1, F )× · · · ×GL(nk + 1, F )×GL(1, F )n−lk−k

(3) Suppose α1, αn−1, αn ∈ θ. Obviously, min1 = 1 and mink + nk =

n + 1.

M ′
θ is isomorphic to SL(n1 + 1, F )× SL(n2 + 1, F )× · · · × SL(nk−1 +

1, F )× Spin(2nk + 1, F ).
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On the set θ \ θk = θ1 ∪ θ2 ∪ · · · ∪ θk−1 we apply the same analysis as

in the case (1) and get

λ1 = t1, . . . , λ
n1+1
1 = tn1+1, λ2 = tn1+2,

...

λmink−1−lk−2
= tmink−1

,
...

tmink−1+nk−1−1 = λ
nk−1

mink−1−lk−2
µ
−nk−1+1
k−2 ,

tmink−1+nk−1
= λ

nk−1+1
mink−1−lk−2

µ
−nk−1

k−2 .

Next, put λmink−1−lk−2+1 = tn. From Proposition 2.2 applied to the set

θk we obtain: tn−1 = tn−2 = · · · = tn−nk
= λ2

mink−1−lk−2+1. We have two

possibilities which are considered separately:

• mink−1 + nk−1 = n− nk

It follows directly that mink−1 − lk−2 = n− lk and λ
nk−1+1
n−lk

µ
−nk−1

k−2 =

λ2
n−lk+1.

So, Aθ ' (F ∗)n−lk .

In Aθ ∩M ′
θ we have:

λn1+1
1 = 1, λ2 = λ3 = · · · = µ1 = 1,

λn2+1
min2−n1

= 1, λmin2−n1+1 = λmin2−n1+2 = · · · = µ2 = 1,
...

λ
nk−1+1
n−lk

= 1 = λ2
n−lk+1.

that implies Aθ∩M ′
θ ' 〈ζn1+1〉×〈ζn2+1〉×· · ·×〈ζnk−2+1〉×〈ζ2(nk−1+1)〉

(this 2(nk−1 + 1)-th root of identity comes from the last equation).

This gives,

Mθ ' GL(n1 + 1, F )× · · · ×GL(nk−2 + 1, F )×GL(1, F )n−lk−k ×
GL(1, F )× SL(nk−1 + 1, F )× Spin(2nk + 1, F )

B
,

where B = {(ζ, ζ2 · Ink−1+1, ζ
nk−1+1) : ζ2(nk−1+1) = 1}. Observe that

the set {ζnk−1+1 : ζ2(nk−1+1) = 1} can be identified with {1, z}, the

center of Spin(2nk + 1, F ).

• mink−1 + nk−1 < n− nk

We put λmink−1−lk−2+2 = tmink−1+nk−1+1 , λmink−1−lk−2+3 = tmink−1+nk−1+2,

. . . , λn−lk = tn−nk−1.
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Again, Aθ ' (F ∗)n−lk , while in Aθ ∩M ′
θ we have

λn1+1
1 = 1, λ2 = λ3 = · · · = µ1 = 1,

...

λ
nk−1+1
mink−1−lk−2

= 1, µk−2 = 1,

λ2
mink−1−lk−2+1 = 1, λmink−1−lk−2+2 = · · · = λn−lk = 1, that implies

Aθ ∩M ′
θ ' 〈ζn1+1〉 × 〈ζn2+1〉 × · · · × 〈ζnk−1+1〉 × 〈ζ2〉.

Observe that 〈ζ2〉 ' {(1, 1), (−1, z)}. We thus get,

Mθ ' GL(n1 + 1, F )× · · · ×GL(nk−1 + 1, F )×GL(1, F )n−lk−k ×
GL(1, F )× Spin(2nk + 1, F )

〈ζ2〉
' GL(n1 + 1, F )× · · · ×GL(nk−1 + 1, F )×GL(1, F )n−lk−k ×

GSpin(2nk + 1, F )

(4) Suppose α1, αn ∈ θ, αn−1 /∈ θ. Clearly, min1 = 1, θk = {αn}
and nk = 1. M ′

θ is isomorphic to SL(n1 + 1, F ) × SL(n2 + 1, F ) × · · · ×
SL(nk−1 +1, F )×Spin(3, F ). This case can be handled in much the same

way as the case (3), so we only state final results.

• if mink−1 + nk−1 = n− 1, then

Mθ ' GL(n1 + 1, F )× · · · ×GL(nk−2 + 1, F )×GL(1, F )n−lk−k ×
GL(1, F )× SL(nk−1 + 1, F )× Spin(3, F )

B

where B = {(ζ, ζ2 · Ink−1+1, ζ
nk−1+1) : ζ2(nk−1+1) = 1}

• if mink−1 + nk−1 < n− 1, then

Mθ ' GL(n1 + 1, F )× · · · ×GL(nk−2 + 1, F )×GL(1, F )n−lk−k ×
GSpin(3, F )

(5) Suppose α1 /∈ θ, αn−1, αn ∈ θ. Obviously, min1 > 1 and mink +

nk = n + 1. M ′
θ is isomorphic to SL(n1 + 1, F ) × SL(n2 + 1, F ) × · · · ×

SL(nk−1 + 1, F )× Spin(2nk + 1, F ).

Let λ1 = tn. From Proposition 2.2 we conclude that tn−1 = · · · =

tmink
= tmink−1 = λ2

1. Next, let λ2 = tmink−2, . . . , λmink−mink−1−nk−1+1 =

tmink−1+nk−1−1.

8



If mink−1 + nk−1 = mink − 1 then put µ1 = λ2
1 otherwise put

µ1 = λmink−mink−1−nk−1
. Using standard calculations, easily follows:

tmink−1+nk−1−2 = λ2
mink−mink−1−nk−1+1µ

−1
1 ,

tmink−1+nk−1−3 = λ3
mink−mink−1−nk−1+1µ

−2
1 ,

...

tmink−1−1 = λ
nk−1+1
mink−mink−1−nk−1+1µ

−nk
1 .

In the next step, let λmink−mink−1−nk−1+2 = tmink−1−2, λmink−mink−1−nk−1+3

= tmink−1−3,. . . , λmink−mink−2−nk−1−nk−2+1 = tmink−2+nk−2−1.

If mink−2 +nk−2 = mink−1−1 then put µ2 = λ
nk−1+1
mink−mink−1−nk−1+1µ

−nk
1

otherwise put µ2 = λmink−mink−2−nk−1−nk−2
. The rest of this construction

runs as before:

tmink−2+nk−2−2 = λ2
mink−mink−2−nk−1−nk−2+1µ

−1
2 ,

...

tmink−2−1 = λ
nk−2+1
mink−mink−2−nk−1−nk−2+1µ

−nk−1

2 ,
...

tmin1−1 = λn1+1
mink−min1−lk−1+1µ

−n1
k−1.

Also, we have to add λmink−min1−lk−1+2 = tmin1−2, . . . , λmink−lk−1−1 = t1.

From mink + nk = n + 1 we easily get that mink − lk−1 − 1 = n− lk.

Aθ = {α∨1 (λn−lk)α
∨
2 (λn−lk−1) · · ·α∨min1−2(λmink−min1−lk−1+2) ·

α∨min1−1(λ
n1+1
mink−min1−lk+nk+1µ

−n1
k−1) · · ·α∨mink−1(λ

2
1) · · ·α∨n(λ1) :

λ1, . . . , λn−lk ∈ F ∗} ' (F ∗)n−lk

In Aθ ∩M ′
θ we have:

λ2
1 = 1, λ2 = · · · = λmink−mink−1−nk−1

= µ1 = 1,λ
nk−1+1
mink−mink−1−nk−1+1 = 1,

...

µk−1 = 1, λn1+1
mink−min1−lk−1+1 = 1, λmink−min1−lk−1+2 = · · · = λn−lk = 1,

that implies

Aθ ∩M ′
θ ' 〈ζn1+1〉 × 〈ζn2+1〉 × · · · × 〈ζnk−2+1〉 × 〈ζ2〉.
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Finally,

Mθ ' GL(n1 + 1, F )× · · · ×GL(nk−2 + 1, F )×GL(1, F )n−lk−k ×
GL(1, F )× Spin(2nk + 1, F )

〈ζ2〉
' GL(n1 + 1, F )× · · · ×GL(nk−2 + 1, F )×GL(1, F )n−lk−k ×

GSpin(2nk + 1, F )

Observe that, for θ = Σ \ {α1} we have θ = θ1, k = 1, n1 = n− 1 and

MΣ\{α1} ' Mθ = GSpin(2(n− 1) + 1, F )

which implies that GSpin(2n − 1, F ) is the maximal Levi subgroup of

Spin(2n + 1, F ).

(6) Suppose α1, αn−1 /∈ θ, αn ∈ θ. Of course, min1 > 1 and nk = 1.

M ′
θ is isomorphic to SL(n1 + 1, F ) × SL(n2 + 1, F ) × · · · × SL(nk−1 +

1, F )× Spin(3, F ). Analysis similar to that in the case (5) shows that:

Mθ ' GL(n1 + 1, F )× · · · ×GL(nk−2 + 1, F )×GL(1, F )n−lk−k ×
GL(1, F )× Spin(3, F )

{1, z}
' GL(n1 + 1, F )× · · · ×GL(nk−2 + 1, F )×GL(1, F )n−lk−k ×

GSpin(3, F )

(7) Suppose α1, αn−1 ∈ θ, αn /∈ θ. Clearly, min1 = 1 and mink + nk =

n. M ′
θ is isomorphic to SL(n1+1, F )×SL(n2+1, F )×· · ·×SL(nk +1, F ).

Proceeding analogously to the case (1) we obtain:

λ1 = t1, t2 = λ2
1, t3 = λ3

1, . . . , tn1 = λn1
1 , tn1+1 = λn1+1

1 ,

λ2 = tn1+2, λ3 = tn1+3, . . . , λmin2−n1 = tmin2 ,

tmin2+1 = λ2
min2−n1

µ−1
1 , . . . , tmin2+n2 = λn2+1

min2−n1
µ−n2

1 ,
...

tmink+nk−1 = λnk
mink−lk−1

µ−nk+1
k−1 , t2n = t2mink+nk

= λnk+1
mink−lk−1

µ−nk
k−1 .

Suppose θ = Σ \ {αn}. Then k = 1, n1 = n − 1, M ′
θ = SL(n, F ) and

t2n = λn
1 = tn1 .

If n is even, say n = 2m, then
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Aθ = {α∨1 (λ1)α
∨
2 (λ2

1) · · ·α∨n−1(λ
n−1
1 )α∨n(λm

1 ) : λ1 ∈ F ∗} ' F ∗.

Observe that tk could not be equal −λm
1 in Aθ, because Aθ is a connected

component of the center. In Aθ∩M ′
θ we have λm

1 = 1, so Aθ∩M ′
θ ' 〈ζm〉,

therefore

Mθ ' GL(1, F )× SL(n, F )

〈ζm〉

If n is odd, then Mθ ' GL(n, F ), as Shahidi asserts in [5], Remark 2.2.

If θ has more then one component, then t2n = λnk+1
mink−lk−1

µ−nk
k−1 .

Since nk + 1 and −nk are of different parities, if nk is even or µk−1 isn’t

equal to λm for some λ ∈ F ∗ and m even, we can proceed in the same

way as above and get

Mθ ' GL(n1 + 1, F )× · · · ×GL(nk + 1, F )×GL(1, F )n−lk−k

Now we have to consider the situation when nk is odd and µk−1 = λm,

for λ ∈ F ∗ and m even. If this is the case, then µk−1 = λ
nk−1+1
mink−1−lk−2

µ
−nk−1

k−2 .

Again, this implies that nk−1 is odd and µk−2 = λ
nk−2+1
mink−2−lk−3

µ
−nk−2

k−3 . We

continue in this fashion to obtain µ2 = λn2+1
min2−n1

µ−n2
1 , n2 is odd, µ1 = λn1+1

1

and n1 is odd. We conclude that nk is odd and µk−1 = λm, for λ ∈ F ∗ and

m even, only if ni is odd for each 1 ≤ i ≤ k and mini + ni = mini+1 − 1

for each 1 ≤ i ≤ k−1. Observe that this implies mink− lk−1 = k = n− lk.

If this is the case, then

Aθ = {α∨1 (λ1)α
∨
2 (λ2

1) · · ·α∨n1+1(λ
n1+1
1 )α∨min2

(λ2) ·
α∨min2+1(λ

2
2µ
−1
1 )α∨min2+2(λ

3
2µ
−2
1 ) · · ·

α∨mink
(λn−lk) · · ·α∨n−1(λ

nk
n−lk

µ−nk+1
k−1 )α∨n(λ

nk+1

2
n−lk

µ) :

λ1, · · · , λn−lk ∈ F ∗, µ2 = µ−nk
k−1} ' (F ∗)n−lk

In Aθ ∩M ′
θ we have:

λn1+1
1 = λn2+1

2 = · · · = λ
nk−1+1
k−1 = λ

nk+1

2
n−lk

= µ1 = µ2 = · · · = µk−1 = 1, we

easily get that λnk+1
n−lk

= 1, so Aθ ∩M ′
θ ' 〈ζn1+1〉 × 〈ζn2+1〉 × · · · × 〈ζnk+1〉

and

Mθ ' GL(n1 + 1, F )× · · · ×GL(nk + 1, F )

(8) Suppose α1, αn /∈ θ, αn−1 ∈ θ. Clearly, min1 > 1, θ 6= Σ \ {αn}
and mink +nk = n. M ′

θ is isomorphic to SL(n1 +1, F )×SL(n2 +1, F )×
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· · · × SL(nk + 1, F ). By the same method as in the case (7), we obtain

Mθ ' GL(n1 + 1, F )× · · · ×GL(nk + 1, F )×GL(1, F )n−lk−k.

From given cases we deduce the following corollary:

Corollary 3.1 The Levi subgroups of the general spin group GSpin(2n+

1, F ) are isomorphic to GL(n1, F )×GL(n2, F )×· · ·×GL(nk, F )×GSpin(2m+

1, F ), m ≤ n.

Remark: Observe that F ∗×SL(n,F )
〈ζn〉 is not isomorphic to GL(n, F ) over

p-adic field F which is not algebraically closed.

Let F1 be a p-adic field. We denote algebraic closure of F1 by F 1.We

have the next exact sequence:

1 → {±1} ↪→ Spin(2n + 1, F 1)
f−→ SO(2n + 1, F 1) → 1,

where f is a central isogeny. F1−rational points of Spin(2n + 1) may be

obtained by using the following exact sequence:

1 → {±1} ↪→ Spin(2n + 1, F1)
f−→ SO(2n + 1, F1)

δ−→ F ∗
1 /(F ∗

1 )2

(homomorphism δ is called the spinor norm)
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